35 research outputs found

    Glyphs for space-time Jacobians of time-dependent vector fields

    Get PDF
    Glyphs have proven to be a powerful visualization technique for general tensor fields modeling physical phenomena such as diffusion or the derivative of flow fields. Most glyph constructions, however, do not provide a way of considering the temporal derivative, which is generally nonzero in non-stationary vector fields. This derivative offers a deeper understanding of features in time-dependent vector fields. We introduce an extension to 2D and 3D tensor glyph design that additionally encodes the temporal information of velocities, and thus makes it possible to represent time-dependent Jacobians. At the same time, a certain set of requirements for general tensor glyphs is fulfilled, such that the new method provides a visualization of the steadiness or unsteadiness of a vector field at a given instance of time

    Towards integrated superconducting detectors on lithium niobate waveguides

    Full text link
    Superconducting detectors are now well-established tools for low-light optics, and in particular quantum optics, boasting high-efficiency, fast response and low noise. Similarly, lithium niobate is an important platform for integrated optics given its high second-order nonlinearity, used for high-speed electro-optic modulation and polarization conversion, as well as frequency conversion and sources of quantum light. Combining these technologies addresses the requirements for a single platform capable of generating, manipulating and measuring quantum light in many degrees of freedom, in a compact and potentially scalable manner. We will report on progress integrating tungsten transition-edge sensors (TESs) and amorphous tungsten silicide superconducting nanowire single-photon detectors (SNSPDs) on titanium in-diffused lithium niobate waveguides. The travelling-wave design couples the evanescent field from the waveguides into the superconducting absorber. We will report on simulations and measurements of the absorption, which we can characterize at room temperature prior to cooling down the devices. Independently, we show how the detectors respond to flood illumination, normally incident on the devices, demonstrating their functionality.Comment: 7 pages, 4 figure

    Compressive characterization of telecom photon pairs in the spatial and spectral degrees of freedom

    Get PDF
    In the past few years, physicists and engineers have demonstrated the possibility of utilizing multiple degrees of freedom of the photon to perform information processing tasks for a wide variety of applications. Furthermore, complex states of light offer the possibility of encoding and processing many bits of information in a single photon. However, the challenges involved in the process of extracting large amounts of information, encoded in photonic states, impose practical limitations to realistic quantum technologies. Here, we demonstrate characterization of quantum correlated photon pairs in the spatial and spectral degrees of freedom. Our technique utilizes a series of random projective measurements in the spatial basis that do not perturb the spectral properties of the photon. The sparsity in the spatial properties of downconverted photons allows us to exploit the potential of compressive sensing to reduce the number of measurements to reconstruct spatial and spectral properties of correlated photon pairs at telecom wavelength. We demonstrate characterization of a photonic state with 12 × 109 dimensions using only 20% of the measurements with respect to the conventional raster scan technique. Our characterization technique opens the possibility of increasing and exploiting the complexity and dimensionality of quantum protocols that utilize multiple degrees of freedom of light with high efficiency

    Evidence for SMAD3 as a modifier of breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Abstract Introduction Current attempts to identify genetic modifiers of BRCA1 and BRCA2 associated risk have focused on a candidate gene approach, based on knowledge of gene functions, or the development of large genome-wide association studies. In this study, we evaluated 24 SNPs tagged to 14 candidate genes derived through a novel approach that analysed gene expression differences to prioritise candidate modifier genes for association studies. Methods We successfully genotyped 24 SNPs in a cohort of up to 4,724 BRCA1 and 2,693 BRCA2 female mutation carriers from 15 study groups and assessed whether these variants were associated with risk of breast cancer in BRCA1 and BRCA2 mutation carriers. Results SNPs in five of the 14 candidate genes showed evidence of association with breast cancer risk for BRCA1 or BRCA2 carriers (P < 0.05). Notably, the minor alleles of two SNPs (rs7166081 and rs3825977) in high linkage disequilibrium (r 2 = 0.77), located at the SMAD3 locus (15q22), were each associated with increased breast cancer risk for BRCA2 mutation carriers (relative risk = 1.25, 95% confidence interval = 1.07 to 1.45, P trend = 0.004; and relative risk = 1.20, 95% confidence interval = 1.03 to 1.40, P trend = 0.018). Conclusions This study provides evidence that the SMAD3 gene, which encodes a key regulatory protein in the transforming growth factor beta signalling pathway and is known to interact directly with BRCA2, may contribute to increased risk of breast cancer in BRCA2 mutation carriers. This finding suggests that genes with expression associated with BRCA1 and BRCA2 mutation status are enriched for the presence of common genetic modifiers of breast cancer risk in these populations
    corecore